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Abstract. Quadratic fractional functions are proved to be quasilinear if and only if they are pseudo-
linear. For these classes of functions, some characterizations are provided by means of the inertia of
the quadratic form and the behavior of the gradient of the function itself. The study is then developed
showing that generalized linear quadratic fractional functions share a particular structure. Therefore
it is possible to suggest a sort of “canonical form” for those functions. A wider class of functions
given by the sum of a quadratic fractional function and a linear one is also studied. In this case
generalized linearity is characterized by means of simple conditions. Finally, it is deepened on the
role played by generalized linear quadratic fractional functions in optimization problems.
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1. Introduction

Quadratic fractional programming deals with constrained optimization problems
where the objective function is the ratio of a quadratic function and an affine one.
Due to its importance in application models (such as risk theory, portfolio the-
ory, location models), this particular class of nonlinear programs has been widely
studied from both a theoretical and an algorithmic point of view (see for example
[2, 3, 23]).

Many solution methods have been given for quadratic fractional programming
problems whose feasible region is a polyhedron. In these cases the generalized
convexity of the objective function plays a fundamental role, since it guarantees
the global optimality of local optima.

Among generalized convex functions, the generalized linear ones are extremely
useful since the above nice property holds for both maximum and minimum prob-
lems. We recall that a function f:A— R, where ACR”" is an open convex set,
is said to be pseudolinear if it is both pseudoconcave and pseudoconvex while it is
said to be quasilinear if it is both quasiconcave and quasiconvex.
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It is known (see for example [1]) that when f is a differentiable pseudolinear
function it results that

— f is not a constant function if and only if Vf(x)##0 for every x € A.

On the other hand, given a closed set X C A, if f is a pseudolinear but not a
constant function then the following properties hold:

— there are neither local maxima nor local minima in the interior of X,
— if X is a polyhedral set then the maximum and minimum values are reached
on a vertex.

Thanks to their properties, generalized linear functions play a key role in both
finding optimality conditions and implementing algorithms for applications.

In this paper we aim to characterize the generalized linearity of quadratic frac-
tional functions and to establish necessary and sufficient conditions which can
be easily checked. By means of the proposed characterizations we first prove
that a quadratic fractional function is quasilinear if and only if it is pseudolinear.
Secondly we show that a quadratic fractional function is pseudolinear if and only
if it can be rewritten as the sum of a linear function and a linear fractional one
with constant numerator. This result allows us to give conditions characterizing the
generalized linearity of a larger class of functions given by the sum of a quadratic
fractional function and a linear one.

Furthermore we show that both minimization and maximization problems, in-
volving a generalized linear quadratic fractional function, can be simply solved
through equivalent linear ones.

2. Preliminary results

In the next section some new characterizations of generalized linear quadratic frac-
tional functions will be given using the inertia of symmetric matrices. With this
regards, the number of the negative eigenvalues of a symmetric matrix Q e R"*"
is denoted by v_(Q). Similarly v, (Q) represents the number of the positive ei-
genvalues, while v,(Q) is the algebraic multiplicity of the 0 eigenvalue. To avoid
trivial cases we assume n > 2. A key tool in our study is the following result given
by Crouzeix (see [14], Theorem 7, p. 253).

PROPOSITION 1. Let heR", h#0, let QeR™™" be a symmetric matrix
and denote with Q° the Moore—Penrose pseudoinverse of Q.' Then the following

"'Let QeR"™ " The Moore-Penrose pseudoinverse of @ is the unique matrix QFeR™"
verifying the following Moore—Penrose equations [20-22]:

00°0=0, Q°Q0'=0", 00°=(00)", Q°0=(0°Q)".
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implication
hv=0 = v'Qv>0

is satisfied Yv e R" if and only if one of the following conditions holds:*
(i) v_(Q)=0,
(ii) v_(Q)=1, he Q(R") and h" Q*h<0.

The assumption 4 #0 in Proposition 1 leads to some technical difficulties in the
application of the proposition to particular problems where the vector /4 is not ne-
cessarily different from zero. For this reason we state the following corollary which
improves the result by Crouzeix [ 14] not requiring the vector /4 to be different from
Zero.

COROLLARY 2. Let heR" and let Q e R™" be a symmetric matrix. Then the
following implication

hWv=0 = v'Qv>0 (1)

is satisfied YveR" if and only if one of the following conditions holds:
(i) v_(Q)=0,
(i) v_(Q)=1, h#0, he Q(R") and u" Qu<0 VueR" s.t. Qu=nh.
Proof. <) If v_(Q)=0 then (1) is trivially satisfied; if (ii) holds then the results
follows from Proposition 1 since condition

u"Qu<0 YueR" such that Qu=~h

implies AT Q*h <0.

=) If v_(Q) =0 then (i) holds. Let us now assume v_(Q)#0 and suppose by
contradiction h=0; then h"v=0 YveR". Hence for condition (1) v"Qu>0
YveR”, that is to say that Q is positive semidefinite which is a contradiction being
v_(Q)#0. Therefore it yields that 40 and (ii) follows from (ii) of Proposition
1. Il

Corollary 2 allows us to state the following property which is a key tool in charac-
terizing the generalized linearity of quadratic fractional functions.

COROLLARY 3. Let heR" and let Qe R"™", Q+#0, be a symmetric matrix.
The following implication
hv=0 = v'Quv=0 2)

is satisfied Yv € R" if and only if one of the following conditions holds:
() »5(Q)=n—1, h#0 and he O(R"),

In [4, 5] matrix Q has been called Moore—Penrose generalized inverse of Q.
2Recall that Q(R") ={yeR":3x € R" such that y=Qx}=Im(Q).



238 R. CAMBINI AND L. CAROSI

(i) v_(Q)=v,(Q)=1, h#0, he Q(R") and u"Qu=0 VYueR" such that
Qu=nh.
Proof. First note that, from Corollary 2, the implication

hv=0 = v"Qv<0

is satisfied Vv e R” if and only if one of the following conditions holds:

(a) vy (Q) =0,

(b) v,.(Q)=1, h#0, he Q(R") and u”" Qu>0 VueR" s.t. Qu=h.

<) If (i) holds and Q is positive semidefinite then v, (Q)=1, v_(Q)=0,
h#0, he Q(R") and u” Qu>0 YueR". Thus (i) of Corollary 2 and condition
(b) hold, hence h"v=0 implies v Qv>0 and v Qu<0, so that (2) holds. The
case Q negative semidefinite can be proved with the same arguments. If (ii) holds
then both conditions (b) and (ii) of Corollary 2 are satisfied; again A7 v=0 implies
v’ Qv >0 and v” Qu<0 so that (2) holds.

=) First note that Condition (2) holds if and only if

{("v=0 = v'Qv>0} and {P"v=0 = v'Qv<O0}

and this happens if and only if one of conditions (i) and (ii) of Corollary 2 holds
together with one of conditions (@) and (b). Observe that conditions (a) and (i) of
Corollary 2 imply Q =0 which is a contradiction. Conditions (a) and (ii) of Corol-
lary 2 imply condition (i) and the same happens if (b) and (i) of Corollary 2 hold.
If otherwise conditions (b) and (ii) of Corollary 2 are satisfied then condition (ii)
follows immediately. Since all the possible exhaustive cases have been considered,
the result is proved. O

Other useful results, which are worth recalling, are the following ones by Diewert
et al. [15] (Corollary 4.3 p. 401, and Theorem 10 p. 407).

PROPOSITION 4. Let f be a differentiable function defined on the open convex
set ACR". Then:

(i) f is quasiconvex if and only if Vx € A, YveR"\ {0}, such that Vf(x)Tv=0
the function ¢, (t) = f(x+1tv) does not attain a semistrict local maximum at
1=0;’

Suppose function f to be also continuously differentiable, then:
(ii) f is pseudoconvex if and only if Vx € A, Yv e R"\ {0}, such that Vf(x)"v=
0 the function ¢, (t)= f(x+1tv) attains a local minimum at t=0.

3 Let f be defined on the open interval (a,b) CR. Then f is said to attain a semistrict local maximum at
a point x, € (a, b) if there exists two points x;,x, € (a,b), x| <X, <x,, such that

F(x) 2 f(x+A(x; —x,)) VAe[0,1]

and f (xo) >min{f (x,), f(x,)}.
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Recall finally the following very well known characterization of pseudolinear func-
tions (see for example [1, 19]) which follows from the results by Diewert et al.
[15].

PROPOSITION 5. A differentiable function f:A— R, ACR" an open convex
set, is pseudolinear if and only if the following implication holds Vx € A, Vv e R",
v#£0, Vt€R such that x+tve A:

VF(x)'v=0 = ¢, (t)=f(x+1tv) is constant

3. Generalized Linearity of Quadratic Fractional Functions

In this section we are going to characterize the generalized linearity of quadratic

fractional functions of the following kind:*

1x"Ox+q"x+q,

fl)=3— ©)
b"x+b,

defined on the set X={xeR":b"x+b,>0}, n>2, where Q#0 is a

nxn symmetric matrix, ¢g,x,beR", b#0, and g,,b,€R. Note that being QO
symmetric, it is Q #0 if and only if v,(Q) <n— 1. Moreover it results:

- b
0

(4)

REMARK 6. It is important to specify that f in (3) is not a constant function.
Suppose by contradiction that f is a constant, that is f(x) =k, so that Vf(x)=0
Vx € X. Consider now an arbitrary x, € X and let « € R be such that o #0,a#1
and ax,€X. From (4) it results Qx,+qg—kb=Qax,+q—kb and hence
0Ox, = aQx, which implies Qx;, = 0, i.e. OQx = 0 Vx € X. Since X is an
n-dimensional halfspace it must be Q =0 which contradicts the definition of (3).

The next theorem points out that a quadratic fractional function is pseudolinear if
and only if it is quasilinear. Moreover, for these classes of functions we give a new
characterization based on the beavior of v/ Qv when Vf(x)"v=0.

THEOREM 7. Consider function f defined in (3). Then the following conditions
are equivalent:
(i) f is pseudolinear on X,
(ii) f is quasilinear on X,
(iii) the following implication holds Vx € X Yve R"\ {0}:

Vi(x)"'v=0 = v Quv=0,

4 Pseudoconvexity of this class of function has been recently studied in [7] and [11].
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(iv) one of the following conditions holds Vx e X :
(a) v(Q)=n—1, Vf(x)#0 and Vf(x) € O(R"),
b) v_(Q) = v, (Q) =1, Vf(x) # 0, Vf(x) € Q(R") and u" Qu = 0
YueR" such that Qu=Vf(x).
Proof. First note that, from (4), it results:

20T QuA-t(bT x+by) Vf (x)Tv
¢, () =f(x+1v)=f(0)+7 bTx+by+1b"v '

(i)=(ii) Trivial.

(ii)=(iii) Since f is both quasiconvex and quasiconcave, it follows from Pro-
position 4 that the function ¢, () =f (x)+%#zgjb% does not attain either a
semistrict local maximum or a semistrict local minimum at t=0, Vxe X, Vv e
R"\ {0} such that Vf(x)"v=0. This happens only if v/ Qu=0, being b x+b,+
th"v>0 Vt € R such that x+rve X.

(iii)=(i) Since Vf(x)"v=0 implies v Qu=0, it follows that ¢ ()=f(x)
Vt e R such that x+fve X. Hence the results follows from Proposition 5.

(iii)<>(iv) Follows directly from Corollary 3. O

Recall that condition Vf(x)#0 Vxe€X, is a necessary condition for a not
constant pseudolinear function.

Now we aim to prove that all the generalized linear quadratic fractional func-
tions can be rewritten in the same way. In other words we are going to point out
the existence of a sort of canonical form for these functions. We first prove the
following lemma.

LEMMA 8. Let us consider function f defined in (3). Then:
(1) Vf(x) € Q(R") Vx € X if and only if 3x,y € R”" such that Qx = q and
Qy=b.
In particular, for any given xe X:
(ii) Qu="Yf(x) if and only if u=>LE0 4k with k eker(Q),
(iii) b"x=b"X and q" x=¢q" X for all x e R" such that Qx=gq,

(iv) bTy=>b"y and q"y=q"y for all y e R" such that Qy=b,

(v) uTQu:ﬁ with:
p(x)=(f(x))*b 5 +2f (x) [by— "]+ (4"~ 24,) (5)
Proof. (i) Assume
_ Ox+q—f(x)b n
Vf(x)—WeQ(R ) VxeX

and let us prove that

dx, ye R" such that Ox=g¢q and Qy=>b.
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Since f is not constant (see Remark 6), 3x,,x,€X such that f(x,)#f(x,).
Therefore Ju,,u, € R" such that

Qu,=Qx,+q—f(x;)b and Qu,=Qx,+q— f(x,)b.

This implies that

Up—Uy— X+ X,
(i)
() —f(x))
and hence 3y € R”" such that Oy = b. It follows also that Qu, = Ox,+qg—
f(x,)Qy which implies ¢=Q(u, —x,+ f(x,)y) and hence Ix€R" such that
Ox=q.
Suppose now that 3x,y € R"” such that Qx=¢g and Qy=>b; then

x+7—f(X)?)’

6
bTx+b, ©

Vf(x>=Q(

so that Vf(x) e Q(R") Vxe X.
(ii) From (6) we have that Qu= Vf(x) if and only if

o (s IO
bTx+b,

and this happens if and only if

(M_ x+X—f(x)y

DTxt b, ) =k eker(Q).

(iii) Since Qx = Qx = ¢, it is Q(x—Xx) = 0 and hence x = X+k with
k € ker(Q). The result then follows being b"k = 3" Qk = 0 = X' Qk = ¢"k
Vk eker(Q).

(iv) Analogous to (iii).

(v) Just note that:

u" Qu

= m [(x+3—f(0)7)" Q(x+3— f(x)7)]

= GTxth)? [(x+X—f(x)7)" (Qx+q—f(x)b)]

~ (f))?TY+2f (x)(by—b'X) +(g"X —24,)
B (b7 x+by)? '

O

Using Lemma 8 we are able to state the following result, related to Condition (iv-a)
in Theorem 7. This new lemma will be a key tool in characterizing the generalized
linearity of f.
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LEMMA 9. Let us consider function f defined in (3). It results
v,(Q)=n—1,Vf(x) e Q(R") Vxe X,

if and only if there exist o, B,y €R, a#0, such that
ay
bTx+b,
Moreover it results Vf(x)#0 Vx e X if and only if y<O.
Proof. <) By means of simple calculations Q =[2abb"] and hence v,(Q)=

n—1. Since Vf () =a[1 - y/(bTx+bO)2]b, it is Vf(x) € Q(R"),Vx€X.
=) It follows from Lemma 8 that our assumption becomes

f(x)=ab"x+B+

v,(Q)=n—1 and 3Ix,yeR" such that Ox=¢g and Qy=>b.

Since b#0 and dim(Q(R"))=1, it is Qx=g¢q if and only if Ju€R such that

q=pub.
Since be Q(R") and dim(Q(R"))=1, vector b is eigenvector of Q. There-
fore, being Q symmetric, there exists @ € R,a#0 such that Q=[2abb”] and

y= mb, 2b"y=1. Consequently

a(b"x)’+ub"x+q, _
bTx+b, B
(b7 x+bg) = by’ +ub"x+ by — by + g
B bTx+b,
abi — uby+q,
bTx+b,

J(x)=

=ab’ x+(u—aby)+

The result then follows defining B=(u—ab,) and y=b}+ ﬁ (qo—mby) .
To prove the second part of the lemma, note that

_ _ Y
Vf(x)=«a |:1 —(bTx+b0)2 i| b

with @ #0, b#0. Hence it results Vf(x)#0 Vx € X if and only if

(b"x+by) #y VxeX. (7)
By definition {yeR:y=b"x+b,, x€X}=R,, so that (7) holds if and only
if y<0. O

We are now ready to provide the following characterization of quadratic fractional
generalized linear functions.
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THEOREM 10. Function f defined in (3) is pseudolinear (or quasilinear) on X
if and only if f is affine or there exist a,3,y€R, a0, such that f can be
rewritten in the following form:

r a
flo=abix Bt
Proof. =) Since f is pseudolinear, either condition (iv-a) or condition (iv-b) of
Theorem 7 holds. If (iv-a) is satisfied the results follows from Lemma 9 noticing
that f is affine when y=0. Suppose now that condition (iv-b) holds. It follows
from Lemma § that

with vy <0.

V—(Q) = V+(Q) = 1’
dx,yeR" s.t. Qx=gq and Qy=>b, p(x)=0VxeX
with Vf(x)#0 Vxe X. Since f is not a constant function, it is p(x) =0 Vxe X
if and only if 5"y=0, b"x=b, and ¢"x=2¢,.
Since v_(Q)=v,(Q)=1, from the canonical form of 0 we get Q=[uu’ —

vv’] where u and v are eigenvectors of Q with u’v=0. From Qy=b, b'y=
¥ Qy=0 we have

¥ 0y=(u'3)" - (v5)*=0
so that v"y==+ u’y. Then

b=0y=u (uTi) — (vTi) v= (uTi) (u+0v),
where ==+1. By defining a= TITV (u—6v) and performing simple calculations
we get

(ab” +ba")=[uu" —v"]=Q
Note that a and b are linearly independent. Let X € R” such that Qx=g¢ and
define ay=a’x. It results

q = ab"x+ba"x=ab,+ba,
1

1
qo = EqszzboaTY+aobeza0b0

1
EXTQ)H‘C]T)H“IO = (b"x+by)(a’ x+ay),
hence f(x)=a’x+a,.

&) If f is affine it is trivially pseudolinear. The whole result then follows
directly from Lemma 9 and Theorem 7. O

REMARK 11. The proof of Theorem 10 points out that:
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(i) when v_(Q)=v,(Q)=1 f is generalized linear if and only if it is affine,
(ii) f may be affine when v,(Q)=n—1 (case y=0),
(iii) f is generalized linear but not affine only if v,(Q)=n—1 (case y <0).

Referring to Theorem 10, when y > 0 it is not possible to have a generalized linear
function on the whole set X (see Example 13). However, in this case, it is possible
to prove that the function may be generalized linear at least on two disjoint convex
sets.

COROLLARY 12. Consider function f defined in (3) and suppose that there exist
a,B,yeR, a#0, such that f can be rewritten in the following form:
ay

=ab’
flo=abix Bt

(1) if y<O then f is pseudolinear (quasilinear) on X.
(ii) if y >0 then f is pseudolinear (quasilinear) on
X, ={xeR":b"x+by> /y} and X,={xeR":0<b"x+by < /7}.
Proof. (i) It has already been proved in Theorem 10.
(ii) Observe that Vf(x) = m[(lﬂx + bo)2 — v]b, and consequently

Vf(x)#0 on X, and X,. The result trivially follows from Theorem 7, being
0 =[2abb"]. g

The following examples use conditions in Theorems 7 and 10 in order to check
the generalized linearity of three quadratic fractional functions.
EXAMPLE 13. Consider problem (3) where

9x7 +24x,x,+ 16x3+6x, —8x,+1
3x,+4x, '

fx)=

Observe that f is not pseudolinear since it is not constant and Vf(x) vanishes at
3x,+4x,=1. In this case we get:

18 24 6 3
Q:[z4 32]"1:[8]b:[4]’b0:0’ B%=1;

by simple calculations we obtain v,(Q)=1=v,(Q) and f(x)=3x,+4x,+2+

1 —
T hence y=1>0.

EXAMPLE 14. Consider problem (3) where

8x2+2x3 4+ 18x3 — 8x,x, —24x, x5+ 12x,x;+ 10x, — 5x, — 15x, —4
—2x,4+x,4+3x;-3 )

fx)=
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In this case we get:

16 —8 —24 10 -2
O=| -8 4 12 |.q=| =5 |.b=| 1 |.by==3, gqy=—4
-24 12 36 —15 3

Since Q is positive semidefinite with v,(Q)=n—1, we have to verify condition
iv-a) of Theorem 7. Note that Vf (x)=(2+ m)b #0VxeX, Vf(x)e
Q(RR?), hence f is pseudolinear. The same result can be obtained by means of

Theorem 10. In fact simple calculations give

1
—2x,+x,+3x;,—3"

f(x)=—4x,4+2x,+6x;+1—

1
so that =2, y= ) <0 and hence f is pseudolinear.

EXAMPLE 15. Consider problem (3) where

—8x7 —24x5+32x35 4+ 16x,x, +64x,x;+ 16x,+ 16x;+2

feo= “8x,—8x,— 16x,—4

In this case we get:

—-1616 0 0 -8
Q: 16 48 64 ,q= 16 ,b: -8 ,b0:—4, q0:2
0 6464 16 —16

Q is indefinite with v, (Q)=v_(Q) =1, hence f is pseudolinear if and only if it
is affine (see also Remark 11). In fact, by means of simple calculations we obtain

1
f(x)=x,—3x,—2x;— 2

4. A Larger Class of Quadratic Fractional Functions

The aim of this section is to study a class of functions larger than the one considered
so far. Specifically speaking, we aim to characterize the generalized linearity of the
following type of functions:

(x)= xTOx+q"x+q,
S T b

+c'x=f(x)+c"x (8)

where as usual X={xeR":b"x+b,>0}, n=2, Q is a nxn symmetric
matrix, ¢,x,b,c€R", b#0, and ¢,, b, €R. Note that g is of the kind (3) when
c¢=0and Q#0. First of all observe that it may happen that f [g] is pseudolinear
even if g [f] is not. This is pointed out in the following examples.
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EXAMPLE 16. Consider problem (8) where
XXX =X +20+1

x)= X,
g(x) PR 1
Observe that
X7+ x 0, —x +2x,+1 3x,+1
flx)=T0hTh 2T 142
X1+ x, X +x,
is not pseudolinear while
—x;+2x,+1
glv)=—
X +Xx,

is pseudolinear since it is a linear fractional function.
Consider now problem (8) where

8x7 4+ 8x,x,+2x3 — 1

g(x)= 2%, 41, X1 — X5
Observe that
8x7 4+ 8x,x,+2x3 — 1
f(x) pr—— (2x;+x,) T

is pseudolinear while

=5 —
g(x) X +x, 2%, +x,

is not pseudolinear.

The characterization of the generalized linearity of g follows from Theorem 10.

THEOREM 17. Let g be of the kind (8); the following statements hold:
(1) g is affine if and only if f is affine;
(ii) g is pseudolinear (quasilinear) but not affine if and only if either Q+bc™ +
cb” =0 or there exist a, £ €R, a#0, such that:
Q+bc" +cb" =2abb", q+byc=Eb, bl <
Proof. (i) The result is trivial provided that g is the sucrvn of f and an affine

function.
(ii) By means of simple calculations g can be rewritten as follows

5XT[Q+be" +eb"|x+[g+byc] x+qq
bTx+b, '

&by—qp

g(x)=

If Q+bc”+cb” =[0] then g is a linear fractional function which is known
to be pseudolinear. If otherwise Q+bc” +cb” #[0], from Theorem 10 g is
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pseudolinear but not affine if and only if there exist «, 8,y € R, a0, such that
it can be rewritten in the following form:

g(x)=ab’ x+B+ ijibo with vy <0
and so
) 1xT[2abb" Jx+ (B+aby)b" x+(Bby+ay)
g(x)= .

bTx+b,
This means that:
Q+bc" +cb" =2abb”, q+byc=(B+aby)b, q,=Bb,+ay.

C]o_:Bbo fbo_%
o

—pp 2%

>

Defining ¢ =B+ab,, so that B=&—ab, and y=
the result then follows from y <O. O

Theorem 17 can be applied also to functions of the kind (3) taking ¢ =0. The next
examples clarify the use of the conditions given in Theorem 17.

EXAMPLE 18. Consider again function g in Example 16. Observe that
21 -1 1 -1
o~[it) 3] o[t amn 3]
Q+bc" 4+ cb” =0 and hence g is pseudolinear.

EXAMPLE 19. Consider problem (8) where

= —4 6x;.
8() —2x,+x,+3x;—3 R
Observe that since
0 -20 -2 -2 —4
O0=-203]|,g=|-2]|,b=| 1 |,c=| 1 |,
0 30 3 3
qo=—4, by=—3, it results
16 —8 —24
OQ+bc"+cb"=| =8 2 12 | =2abb" with a=2,
—24 12 36
10
q+byc=| =5 [=¢&b with §=-5,
—15
19 &b,—q
b2:9 i 0 0’
0 = 2 o

hence g is pseudolinear.
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5. Pseudolinear Quadratic Fractional Functions in Optimization

Theorem 10 shows that every generalized linear quadratic fractional function f is
the sum of a linear and a linear fractional one. This property, together with Theorem
17 and Corollary 12, can be efficiently used in order to study the following class of
problems

IXTOx+q"x+
min/max g(x)=2 Qx+q x4y

+clx=f(x)+clx, 9
in/m bTxt b, f(x) ©)

where g is of the kind (8) and the matrix Q+bc” +cb” has at least n—2 zero
eigenvalues. Note that recent optimality conditions for pseudolinear functions can
be found in [17, 24].

Case 1 — g is an affine function
For Theorem 17, this case occurs whenever f is an affine function that is when:

da, € R such that g, = ayb,, Ja € R" such that g—a,b = bya, and it results
Q=ab" +bad’.

In this case f(x) = a’x + a, and hence g(x) = (a + ¢)"x + a, . Problem (9)
can then be solved by means of a linear problem:

argmin /argmax g(x)=argmin/argmax (a+c)’x
xeSCX xeSCX

Case 2 — g is a linear fractional function

This case occurs when (see Theorem 17):
Q+bc"+cb"=0
The objective function becomes

(g+byc) x+q,
gx)=—r—7T—
bTx+b,

and problem (9) can be solved with any algorithm for linear fractional functions
(see for all [8, 9, 16]).

Case 3 — g is a pseudolinear but not affine function

Suppose that g is not a linear fractional function (this case has been already con-
sidered). By means of Theorem 17 g is pseudolinear but not affine when:

Ja € R, a # 0, such that Q + bc? + ¢b” = 2abb”, I¢ € R such that
q+byc=¢£Db, and it results b} < (£by—q,)/ .
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Defining B=§& —ab,, y=b;—[(£b,—q,)/a] and the function ¢(t)=at+B+
[ay/(t+b,y)] we have that:

oy

— T ;
bTx+b0_go(b x) with y<O0.

g(x)=ab’ x+B+

Since <p/(t)=a(1—y/(t+b0)2) we have that ¢’(f)>0 [<O0] if and only if
a >0 [<0] and hence:

a >0 = argmin/argmax g(x)=argmin/argmax b’ x,
xeSCX xeSCX

a >0 = argmin/argmax g(x)=argmax/argmin b’ x.
xeSCX xeSCX

Consequently problem (9) can be solved by means of a linear one.

Case 4 — g is pseudolinear on subsets of X
Suppose that:

Ja € R, @ # 0, such that Q + bc” + ¢b” = 2abb”, 3¢ € R such that

g+byc=¢£Db, and it results bi > (£by—q,)/ .

Defining B=§& —ab,, y=b3—[(£b,—q,)/a] and the function ¢(1)=at+B+
[ay/(t+b,)], from Theorem 17, we have that:

ay
bTx+b,

g(x)=ab" x+B+ =@(b"x) with y>0.

From Corollary 12 g is not pseudolinear on X but it is pseudolinear on
X, ={xeR":b"x+by>/y} and
X,={xeR":0<b"x+by<./7}.

Assume now X;={xeR":b"x+b,=,/y}. Since

g(x)=2ay—aby+p=2a(vy—by))+& VxeX,,

g is constant on X;. Consequently, problem (9) can be studied by determining the
sets

S =argmin{b’ x}, S} =argmax{b’ x},

xeSNXy xeSNX,
Sy =argmin{b’ x}, S) =argmax{b’x},
xeSNXy xeSNX,p

and by denoting (if the related sets are nonempty)

m m M M m m M M
xi'eS!, xieS), x'es), x €8y, xeSnX;.
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If >0 then ¢'(t) >0 when 7+b,> ./y while it is ¢'(f) <0 when 0 <745, <
/Y- Hence we get

min {g(x)} = min{g(x"), g(x)"),g(x;)},

xeSCX

max {g(x)} = max{g(x}), g(x}),g(x;)};

xeSCX

analogously for o <0 it is

min {g(x)} = min{g(x}),g(x7),g(x3)},

xeSCX

max {g(x)} = max{g(x"), g(x2"), 8(x3)}.

Again, problem (9) can be solved by means of linear ones.
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